Circadian Time-Place Learning in Mice Depends on Cry Genes

نویسندگان

  • Eddy A. Van der Zee
  • Robbert Havekes
  • R. Paulien Barf
  • Roelof A. Hut
  • Ingrid M. Nijholt
  • Edwin H. Jacobs
  • Menno P. Gerkema
چکیده

Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cr...

متن کامل

Circadian clocks and memory: time-place learning

Time-Place learning (TPL) refers to the ability of animals to remember important events that vary in both time and place. This ability is thought to be functional to optimize resource localization and predator avoidance in a circadian changing environment. Various studies have indicated that animals use their circadian system for TPL. However, not much is known about this specific role of the c...

متن کامل

Genetics and neurobiology of circadian clocks in mammals.

In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptio...

متن کامل

Cancer and the circadian clock: has the time finally come?

W ithout the concept of time, there would be no physics, chemistry, or geology, but in medicine, time often gets short shrift. Yet in recent decades a small cadre of clinical investigators has found associations between the body's daily rhythms and the effectiveness of cancer treatment. Working in tandem, biologists have dissected the molecular underpinnings of the human circadian clock, a feed...

متن کامل

Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.

The circadian clock of the suprachiasmatic nucleus (SCN) drives daily rhythms of behavior. Cryptochromes (CRYs) are powerful transcriptional repressors within the molecular negative feedback loops at the heart of the SCN clockwork, where they periodically suppress their own expression and that of clock-controlled genes. To determine the differential contributions of CRY1 and CRY2 within circadi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008